Mastering Injectivity and Surjectivity: Practice Problems

GeekyRahul

Data Scientist, IITM Student

Function Analysis Practice Questions

Question 1:
Given the function f : R R defined by f(x ) = 3 x 5 f(x) = 3x - 5

  • Determine if f f  is injective.
  • Determine if f f  is surjective.

Question 2:
Given the function g : Z Z g: \mathbb{Z} \to \mathbb{Z}  defined by g ( x ) = x 3 g(x) = x^3

  • Determine if g g  is injective.
  • Determine if g g  is surjective.

Question 3:
Given the function h : R R h: \mathbb{R} \to \mathbb{R}  defined by h ( x ) = e x h(x) = e^x

  • Determine if h h  is injective.
  • Determine if h h  is surjective.

Question 4:
Given the function k : Q Q k: \mathbb{Q} \to \mathbb{Q}  defined by k ( p q ) = p + q q k\left(\frac{p}{q}\right) = \frac{p+q}{q}

  • Determine if k k  is injective.
  • Determine if k k  is surjective.

Question 5:
Given the function m : Z Z m: \mathbb{Z} \to \mathbb{Z}  defined by m ( x ) = x m(x) = |x| :

  • Determine if m m  is injective.
  • Determine if m m  is surjective.

Question 6:
Given the function n : N N n: \mathbb{N} \to \mathbb{N}  defined by n ( x ) = x 2

  • Determine if n n  is injective.
  • Determine if n n  is surjective.

Question 7:
Given the function p : R R p: \mathbb{R} \to \mathbb{R}  defined by p ( x ) = cos ( x )

  • Determine if p p  is injective.
  • Determine if p p  is surjective.

Question 8:
Given the function q : Q Z q: \mathbb{Q} \to \mathbb{Z}  defined by q ( p q ) = p q q\left(\frac{p}{q}\right) = p \cdot q

  • Determine if q q  is injective.
  • Determine if q q  is surjective.

Question 9:
Given the function r : R R r: \mathbb{R} \to \mathbb{R}  defined by r ( x ) = x 2 + 1 r(x) = x^2 + 1

  • Determine if r r  is injective.
  • Determine if r r  is surjective.

Question 10:
Given the function s : Z Z s: \mathbb{Z} \to \mathbb{Z}  defined by s ( x ) = x 1 s(x) = x - 1  

  • Determine if s s  is injective.
  • Determine if s s  is surjective.


Answers

Question 1:

  • Injective: Yes
  • Surjective: Yes

Question 2:

  • Injective: Yes
  • Surjective: Yes

Question 3:

  • Injective: Yes
  • Surjective: No

Question 4:

  • Injective: No
  • Surjective: Yes

Question 5:

  • Injective: No
  • Surjective: No

Question 6:

  • Injective: No
  • Surjective: No

Question 7:

  • Injective: No
  • Surjective: No

Question 8:

  • Injective: No
  • Surjective: No

Question 9:

  • Injective: No
  • Surjective: No

Question 10:

  • Injective: Yes
  • Surjective: Yes